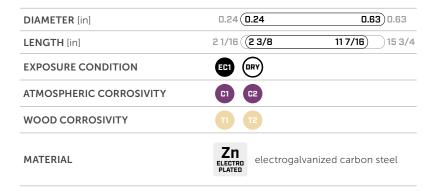
I SKR | SKS | SKP

SCREW ANCHOR FOR CONCRETE CE1

SEISMIC PERFORMANCE


Certified for applications on cracked and non-cracked concrete and in performance class for seismic actions C1 (M10-M16) [d₁ 0.40-0.63 inch] and C2 (M12-M16) [d₁ 0.48-0.63 inch].

IMMEDIATE STRENGTH

Its operating principle allows the load to be applied after zero waiting times.

OPERATION BY SHAPE

The stresses acting on the anchor are transmitted to the substrate predominantly through the interaction of the geometric conformation of the anchor, in particular, diameter and thread; allowing it to lock into the substrate and guaranteeing the seal.

CODES AND DIMENSIONS

SKR - hexagonal washer head

d_1	CODE		L	t _{fix}	h _{1,min}	h _{nom}	h _{ef}	d ₀	d _F	T _{inst}	N _{p,uncr} (*)	pcs
[mm] [in]		[mm]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[ft·lbs]	[lbs]	
8 0.32 SW 10	SKR8100	100	4	1 9/16	2 15/16	2 3/8	1 7/8	7/32	3/8	154	3979	50
10	SKR1080	80	3 1/8	3/8	3 3/8	2 3/4	2 3/16	5/16	1/2	154	5305	50
0.40	SKR10100	100	4	1 3/16	3 3/8	2 3/4	2 3/16	5/16	1/2	154	5305	25
SW 13	SKR10120	120	4 3/4	1 15/16	3 3/8	2 3/4	2 3/16	5/16	1/2	154	5305	25
	SKR1290	90	3 1/2	3/8	4	3 1/8	2 1/2	3/8	9/16	243	6789	25
	SKR12110	110	4 3/8	1 3/16	4	3 1/8	2 1/2	3/8	9/16	243	6789	25
12	SKR12150	150	6	2 3/4	4	3 1/8	2 1/2	3/8	9/16	243	6789	25
0.48 SW 15	SKR12210	210	8 1/4	5 1/8	4	3 1/8	2 1/2	3/8	9/16	243	6789	20
311 13	SKR12250	250	10	6 3/4	4	3 1/8	2 1/2	3/8	9/16	243	6789	15
	SKR12290	290	11 7/16	8 1/4	4	3 1/8	2 1/2	3/8	9/16	243	6789	15
16 0.63 SW 21	SKR16130	130	5 1/8	1 3/16	5 1/2	4 3/8	3 3/8	9/16	11/16	243	8880	10

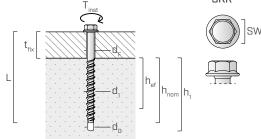
 $^{^{(\}star)}N_{p,uncr}$ = pull-out resistance in uncracked concrete (mean test value). Values obtained from pull-out tests. For ASD values the designer shall refer to the relevant standard.

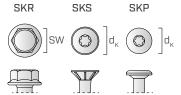
SKS - countersunk head

d ₁	CODE		L	t _{fix}	h _{1,min}	h_{nom}	h _{ef}	d ₀	d_F	d_K	N _{p,uncr} (*)	pcs
[mm] [in]		[mm]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[lbs]	
6 0.24 TX 30	SKS660	60	2 3/8	3/8	2 3/16	1 15/16	1 1/2	3/16	1/4	0.433	2945	100
7,5 0.29	SKS880	80	3 1/8	13/16	2 15/16	2 3/8	1 7/8	7/32	3/8	0.551	3979	50
TX 30	SKS8100	100	4	1 9/16	2 15/16	2 3/8	1 7/8	7/32	3/8	0.551	3979	50
10 0.40 TX 40	SKS10100	100	4	1 3/16	3 3/8	2 3/4	2 3/16	5/16	1/2	0.787	5305	50

^(*) N_{D,UNCT} = pull-out resistance in uncracked concrete (mean test value). Values obtained from pull-out tests. For ASD values the designer shall refer to the relevant standard.

SKP - pan head


d_1	CODE		L	t_{fix}	h _{1,min}	h_{nom}	h _{ef}	d_0	d_F	d_K	N _{p,uncr} (*)	pcs
[mm] [in]		[mm]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[lbs]	
6 0.24	SKP680	80	3 1/8	1 3/16	2 3/16	1 15/16	1 1/2	3/16	1/4	0.472	2945	50
	SKP6100	100	4	1 15/16	2 3/16	1 15/16	1 1/2	3/16	1/4	0.472	2945	50


 $^{^{(\}star)}$ N_{p,uncr} = pull-out resistance in uncracked concrete (mean test value). Values obtained from pull-out tests. For ASD values the designer shall refer to the relevant standard.

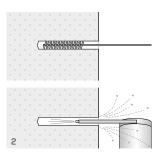
ADDITIONAL PRODUCTS - ACCESSORIES

CODE	description	pcs
SOCKET10	SW 10 bushing 1/2" connection	1
SOCKET13	SW 13 bushing 1/2" connection	1
SOCKET15	SW 15 bushing 1/2" connection	1
SOCKET21	SW 21 bushing 1/2" connection	1

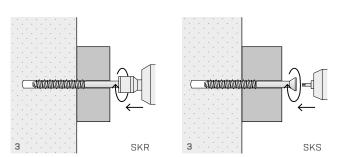
 d_1 external diameter of anchor anchor length maximum fastening thickness t_{fix}

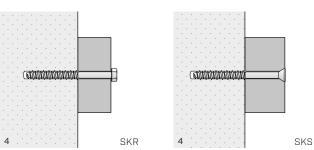
 h_1 minimum hole depth \mathbf{h}_{nom} nominal anchoring depth effective anchor depth h_{ef}

 d_0 hole diameter in the concrete support d_{F}


maximum hole diameter in the element to be fastened SW wrench size

 \textbf{d}_{K} head diameter Tinst tightening torque


ASSEMBLY


Drill a hole in rotary percussion mode

Clean the hole

Position the object to be fixed and install the screw with a pulse screw gun

Ensure the anchor head is in complete contact with the object to be fixed